- Home
- Standard 11
- Physics
10-1.Thermometry, Thermal Expansion and Calorimetry
normal
A thin copper wire of length $L$ increase in length by $1\%$ when heated from temperature $T_1$ to $T_2$. What is the percentage change in area when a thin copper plate having dimensions $2L\times L$ is heated from $T_1$ to $T_2$ ? ....... $\%$
A
$1$
B
$2$
C
$3$
D
$4$
Solution
$\Delta T=100-0=100^{\circ} \mathrm{C}$
$\Delta L / L=$ length $=L=1 \%=1 / 100=0.01$
$\Delta L=\alpha L \Delta T$
$\Delta L / L=\alpha x 100$
$0.01=\alpha x 100$
$\alpha=0.01 / 100=1 \times 10^{-4}$
Given Area of copper plate $=2 L x L=2 L^{2}$
By thermal expansion theory,
$\Delta A=\beta A \Delta T$
$\Delta A / A=\beta \Delta T$
but,
$\beta=2 \alpha$
$\Delta A / A=2 \alpha \Delta T$
$=2 \times 1 \times 10^{-4} \times 100$
$=2 \times 10^{-} 2$
$\Delta A / A \times 100=2 \times 10^{-2} \times 100=2 \%$
Standard 11
Physics
Similar Questions
hard