A thin metallic spherical shell contains a charge $Q$ on it. A point charge $+q$ is placed at the centre of the shell and another charge $q'$ is placed outside it as shown in fig. All the three charges are positive. The force on the central charge due to the shell is :-
upward
toward left
toward right
zero
An empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$
If another point charge $q_B$ is also placed at a distance $c ( > b) $ the center of shell, then choose the correct statements
$(a)$ A conductor $A$ with a cavity as shown in Figure $(a)$ is given a charge $Q$. Show that the entire charge must appear on the outer surface of the conductor.
$(b)$ Another conductor $B$ with charge $q$ is inserted into the cavity keeping $B$ insulated from $A$. Show that the total charge on the outside surface of $A \text { is } Q+q$ [Figure $(b)$]
$(c)\;A$ sensitive instrument is to be shielded from the strong electrostatic fields in its environment. Suggest a possible way.
$A$ and $B$ are two concentric spheres. If $A$ is given a charge $Q$ while $B$ is earthed as shown
Inside a hollow charged spherical conductor, the potential
A solid spherical conducting shell has inner radius a and outer radius $2a$. At the center of the shell is located a point charge $+Q$. What must the excess charge of the shell be in order for the charge density on the inner and outer surfaces of the shell to be exactly equal ?