- Home
- Standard 11
- Physics
A van der Waal's gas obeys the equation of state $\left(p+\frac{n^2 a}{V^2}\right)(V-n b)=n R T$. Its internal energy is given by $U=C T-\frac{n^2 a}{V}$. The equation of a quasistatic adiabat for this gas is given by
$T^{C / n R} \cdot V=$ constant
$T^{(C+n R) / n R} \cdot V=$ constant
$T^{C / n R} \cdot(V-n b)=$ constant
$p^{(C+n R) / n R} \cdot(V-n b)=$ constant
Solution
(c)
Process is quasistatic adiabatic.
$\text { So, } d Q =0$
$\Rightarrow d W =-d U$
$\Rightarrow p \Delta V =-n C_V d T \quad \dots(i)$
$U =C T-\frac{n^2 a }{V} \quad \dots(ii)$
and $\quad p=\frac{n R T}{V-n b}-\frac{n^2 a}{V^2} \quad \dots(iii)$
From Eq. $(ii)$, $d U=C d T+\frac{n^2 a }{V^2} d V$
So, from Eq. $(i)$, we have
$d W=-d U$
$\Rightarrow \quad p d V=-\left(C d T+\frac{n^2}{V^2} d V\right)$
Substituting for $p$ from Eq. $(iii)$ in above equation, we have
$\Rightarrow\left(\frac{n R T}{V-n b}-\frac{n^2 a}{V^2}\right) d V$
$=-C d T-\frac{n^2 \alpha }{V^2} \cdot d V$
$\Rightarrow\left(\frac{n R T}{V-n b}\right) d V=-C d T$
$\Rightarrow \quad \frac{d V}{V-n b}=\frac{-C}{n R} \cdot \frac{d T}{T}$
$\Rightarrow \quad \int \frac{d V}{V-n b}=-\frac{C}{n R} \int \frac{d T}{T}$
$\Rightarrow \log (V-n b)+k=-\log T^{C / n R}$
$\Rightarrow \log \left(T^{C / n R} \cdot(V-n b)\right)=$ constant
$\Rightarrow T^{C / n R} \cdot(V-n b)=$ constant