A vector has a magnitude $x$. If it is rotated by an angle $\theta$, then magnitude of change in vector is $n x$. Match the following two columns.
Colum $I$ Colum $II$
$(A)$ $\theta=60^{\circ}$ $(p)$ $n=\sqrt{3}$
$(B)$ $\theta=90^{\circ}$ $(q)$ $n=1$
$(C)$ $\theta=120^{\circ}$ $(r)$ $n=\sqrt{2}$
$(D)$ $\theta=180^{\circ}$ $(s)$ $n=2$

  • A
    $( A \rightarrow q , B \rightarrow r , C \rightarrow p , D \rightarrow s )$
  • B
    $( A \rightarrow s , B \rightarrow r , C \rightarrow p , D \rightarrow q )$
  • C
    $( A \rightarrow q , B \rightarrow p , C \rightarrow r , D \rightarrow s )$
  • D
    $( A \rightarrow p , B \rightarrow r , C \rightarrow q , D \rightarrow s )$

Similar Questions

If $A = 3\hat i + 4\hat j$ and $B = 7\hat i + 24\hat j,$the vector having the same magnitude as $B$ and parallel to $A$ is

Let $\theta$ be the angle between vectors $\vec{A}$ and $\vec{B}$. Which of the following figures correctly represents the angle $\theta$ ?

How can we represent vector quantity ?

The angle between vectors $\vec a$ and $\vec b$ is $\frac{\pi }{6}$. The angle between vectors $ - 3\vec a$ and $ 2\vec b$ is

“Explain the meaning of multiplication of vectors by real numbers with an example.”