According to classical theory, Rutherford atom was
Electrostatically stable
Electrodynamically unstable
Semi stable
Stable
Apply Bohr’s atomic model to a lithium atom. Assuming that its two $K$-shell electrons are too close to nucleus such that nucleus and $K$-shell electron act as a nucleus of effective positive charge equivalent to electron. The ionization energy of its outermost electron is......$eV$
The transition from the state $n = 3$ to $n = 1$ in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition from
The following diagram indicates the energy levels of a certain atom when the system moves from $2E$ level to $E$, emitting a photon of wavelength $\lambda $. The wavelength of photon produced during its transition from $\frac{4E}{3}$ level to $E$ is
The gravitational attraction between electron and proton in a hydrogen atom is weaker than the coulomb attraction by a factor of about $10^{-40} .$ An alternative way of looking at this fact is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were bound by gravitational attraction.