- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
All the points $(x, y)$ in the plane satisfying the equation $x^2+2 x \sin (x y)+1=0$ lie on
A
a pair of straight lines
B
a family of hyperbolas
C
a parabola
D
an cllipse
(KVPY-2011)
Solution
(a)
We have, $x^2+2 x \sin x y+1=0$
$\Rightarrow x^2+2 x \sin x y+\sin ^2 x y+1-\sin ^2 x y=0$
$\Rightarrow \quad(x+\sin x y)^2+\cos ^2 x y=0$
$\therefore x+\sin x y=0$ and $\cos ^2 x y=0$
$\begin{aligned} \cos ^2 x y &=0 \\ \Rightarrow \quad x y &=(2 n+1) \frac{\pi}{2} \end{aligned}$
$\Rightarrow \quad x+1=0$
$\left[\because \cos ^2 x y=0 \Rightarrow \sin x y=1\right]$
$\Rightarrow \quad x=-1$
$\therefore \quad y=-(2 n+1) \frac{\pi}{2}$
Standard 11
Mathematics