An air bubble in a water tank rises from the bottom to the top. Which of the following statements are true
Bubble rises upwards because pressure at the bottom is less than that at the top.
Bubble rises upwards because pressure at the bottom is greater than that at the top.
As the bubble rises, its size increases
Both (b) and (c)
The diameter of rain-drop is $0.02 \,cm$. If surface tension of water be $72 \times {10^{ - 3}}\,newton$ per metre, then the pressure difference of external and internal surfaces of the drop will be
A cylinder with a movable piston contains air under a pressure $p_1$ and a soap bubble of radius $'r'$ . The pressure $p_2$ to which the air should be compressed by slowly pushing the piston into the cylinder for the soap bubble to reduce its size by half will be: (The surface tension is $\sigma $ , and the temperature $T$ is maintained constant)
The adjoining diagram shows three soap bubbles $A, B$ and $C$ prepared by blowing the capillary tube fitted with stop cocks, $S_1$, $S_2$ and $S_3$. With stop cock $S$ closed and stop cocks $S_1$, $S_2$ and $S_3$ opened
A hot air balloon is a sphere of radius $8$ $m$. The air inside is at a temperature of $60^{°}$ $C$. How large a mass can the balloon lift when the outside temperature is $20^{°}$ $C$ ? Assume air is an ideal gas, $R = 8.314\,J\,mol{e^{ - 1}},1\,atm = 1.013 \times {10^5}{P_a},$ the membrane tension is $= 5\,N/m$.
Air (density $\rho$ ) is being blown on a soap film (surface tension $T$ ) by a pipe of radius $R$ with its opening right next to the film. The film is deformed and a bubble detaches from the film when the shape of the deformed surface is a hemisphere. Given that the dynamic pressure on the film due to the air blown at speed $v$ is $\frac{1}{2} \rho v^{2}$, the speed at which the bubble formed is