An empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$
If another point charge $q_B$ is also placed at a distance $c ( > b) $ the center of shell, then choose the correct statements
force experienced by charge $A$ is $\frac{{\sigma {q_A}{b^2}}}{{{\varepsilon _0}{c^2}}}$
force experienced by charge $A$ is zero
The force experienced by charge $B$ is $\frac{{\sigma {q_B}{b^2}}}{{{\varepsilon _0}{c^2}}}$
The force experienced by charge $B$ is $\frac{{k{q_A}{q_B}}}{{{c^2}}}$
Two charged spherical conductors of radius $R_{1}$ and $\mathrm{R}_{2}$ are connected by a wire. Then the ratio of surface charge densities of the spheres $\left(\sigma_{1} / \sigma_{2}\right)$ is :
Figure shows a charged conductor resting on an insulating stand. If at the point $P$ the charge density is $\sigma $, the potential is $V$ and the electric field strength is $E$, what are the values of these quantities at point $Q$
Charge density potential Electric intensity
A metallic rod is placed in a uniform electric field. Select the correct option.
A hollow conducting sphere is placed in an electric field produced by a point charge placed at $P$ as shown in figure. Let ${V_A},{V_B},{V_C}$ be the potentials at points $A,B$ and $C$ respectively. Then
Two metal spheres, one of radius $R$ and the other of radius $2R$, both have same surface charge density $\sigma $. They are brought in contact and separated. What will be new surface charge densities on them ?