Gujarati
Hindi
11.Thermodynamics
normal

An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity $C$ remains constant. If during this process the relation of pressure $P$ and volume $V$ is given by $PV^n = $ constant, then $n$ is given by (Here $C_P$ and $C_V$ are molar specific heat at constant pressure and constant volume, respectively)

A

$n = \frac{{C - {C_V}}}{{C - {C_P}}}$

B

$n = \frac{{{C_P}}}{{{C_V}}}$

C

$n = \frac{{C - {C_P}}}{{C - {C_V}}}$

D

$n = \frac{{{C_P} - C}}{{C - {C_V}}}$

Solution

Specific heat $C=\frac{R}{1-n}+C_{V}$ for polytropic process

$\therefore \frac{\mathrm{R}}{1-\mathrm{n}}+\mathrm{C}_{\mathrm{V}}=\mathrm{C}$

$\frac{\mathrm{R}}{1-\mathrm{n}}=\mathrm{C}-\mathrm{C}_{\mathrm{v}} \Rightarrow \frac{\mathrm{R}}{\mathrm{C}-\mathrm{C}_{\mathrm{V}}}=1-\mathrm{n}$

(Where $\left.\mathrm{R}=\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}\right)$

$\Rightarrow \mathrm{n}=\frac{\mathrm{C}-\mathrm{C}_{\mathrm{p}}}{\mathrm{C}-\mathrm{C}_{\mathrm{V}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.