An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho $. It has a spherical cavity of radius $R/2$ with its centre on the axis of the cylinder, as shown in the figure. The magnitude of the electric field at the point $P$, which is at a distance $2R$ from the axis of the cylinder, is given by the expression $\frac{{23\rho R}}{{16K{\varepsilon _0}}}$ .The value of $K$ is

115-1002

  • A

    $6$

  • B

    $5$

  • C

    $7$

  • D

    $4$

Similar Questions

A spherical conductor of radius $12 \;cm$ has a charge of $1.6 \times 10^{-7} \;C$ distributed uniformly on its surface. What is the electric field

$(a)$ inside the sphere

$(b)$ just outside the sphere

$(c)$ at a point $18\; cm$ from the centre of the sphere?

The region between two concentric spheres ofradii '$a$' and '$b$', respectively (see figure), have volume charge density $\rho = \frac{A}{r}$ where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is :

  • [JEE MAIN 2016]

A solid sphere of radius $R$ has a charge $Q$ distributed in its volume with a charge density $\rho=\kappa r^a$, where $\kappa$ and $a$ are constants and $r$ is the distance from its centre. If the electric field at $r=\frac{R}{2}$ is $\frac{1}{8}$ times that at $r=R$, find the value of $a$.

  • [IIT 2009]

An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet $S$ having surface charge density $+\sigma$. The electron at $t=0$ is at a distance of $1 \mathrm{~m}$ from $S$ and has a speed of $1 \mathrm{~m} / \mathrm{s}$. The maximum value of $\sigma$ if the electron strikes $S$ at $t=1 \mathrm{~s}$ is $\alpha\left[\frac{\mathrm{m} \in_0}{\mathrm{e}}\right] \frac{\mathrm{C}}{\mathrm{m}^2}$ the value of $\alpha$ is

  • [JEE MAIN 2024]

The electric intensity due to an infinite cylinder of radius $R$ and having charge $q$ per unit length at a distance $r(r > R)$ from its axis is