Asphere of radius $R$ and made of material of relative density $\sigma$ has a concentric cavity of radius $r$. It just floats when placed in a tank full of water. The value of the ratio $R/r$ will be
${\left( {\frac{\sigma }{{\sigma - 1}}} \right)^{1/3}}$
${\left( {\frac{{\sigma - 1}}{\sigma }} \right)^{1/3}}$
${\left( {\frac{{\sigma + 1}}{\sigma }} \right)^{1/3}}$
${\left( {\frac{{\sigma - 1}}{{\sigma + 1}}} \right)^{1/3}}$
A fluid container is containing a liquid of density $\rho $ is accelerating upward with acceleration a along the inclined place of inclination $\alpha$ as shown. Then the angle of inclination $ \theta $ of free surface is :
A slender homogeneous rod of length $2L$ floats partly immersed in water, being supported by a string fastened to one of its ends, as shown. The specific gravity of the rod is $0.75$. The length of rod that extends out of water is :
A pan balance has a container of water with an overflow spout on the right-hand pan as shown. It is full of water right up to the overflow spout. A container on the left-hand pan is positioned to catch any water that overflows. The entire apparatus is adjusted so that it’s balanced. A brass weight on the end of a string is then lowered into the water, but not allowed to rest on the bottom of the container. What happens next ?
Determine the equation for the volume of body’s partially part immersed in a fluid for the floating body.
Water is pumped from a depth of $10 $ $m$ and delivered through a pipe of cross section $10^{-2}$ $m^2$. If it is needed to deliver a volume of $10^{-1} $ $m^3$ per second the power required will be ........ $kW$