Assertion : A deuteron and an $\alpha -$ particle are placed in an electric field. If $F_1$ and $F_2$ be the forces acting on them and $a_1$ and $a_2$ be their accelerations respectively then, $a_1 = a_2$.
Reason : Forces will be same in electric field
If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
If Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
A certain charge $Q$ is divided into two parts $q$ and $(Q-q) .$ How should the charges $Q$ and $q$ be divided so that $q$ and $(Q-q)$ placed at a certain distance apart experience maximum electrostatic repulsion?
A charge $q$ is placed at the centre of the line joining two equal charges $Q$. The system of the three charges will be in equilibrium, if $q$ is equal to
A $10\,\mu C$ charge is divided into two parts and placed at $1\,cm$ distance so that the repulsive force between them is maximum. The charges of the two parts are :
If two charges $q _1$ and $q _2$ are separated with distance ' $d$ ' and placed in a medium of dielectric constant $K$. What will be the equivalent distance between charges in air for the same electrostatic force?
Two identical metallic spheres $A$ and $B$ when placed at certain distance in air repel each other with a force of $F$. Another identical uncharged sphere $C$ is first placed in contact with $A$ and then in contact with $B$ and finally placed at midpoint between spheres $A$ and $B$. The force experienced by sphere $C$ will be.