Assertion : Electric lines of force never cross each other.
Reason : Electric field at a point superimpose to give one resultant electric field.
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
An infinite, uniformly charged sheet with surface charge density $\sigma$ cuts through a spherical Gaussian surface of radius $R$ at a distance $x$ from its center, as shown in the figure. The electric flux $\Phi $ through the Gaussian surface is
Explain electric flux.
Which among the curves shown in Figureb cannot possibly represent electrostatic field lines?
A disk of radius $a / 4$ having a uniformly distributed charge $6 C$ is placed in the $x-y$ plane with its centre at $(-a / 2,0,0)$. A rod of length $a$ carrying a uniformly distributed charge $8 C$ is placed on the $x$-axis from $x=a / 4$ to $x=5 a / 4$. Two point charges $-7 C$ and $3 C$ are placed at $(a / 4,-$ $a / 4,0)$ and $(-3 a / 4,3 a / 4,0)$, respectively. Consider a cubical surface formed by six surfaces $x=\pm a / 2, y=\pm a / 2, z=\pm a / 2$. The electric flux through this cubical surface is
The electric field components in Figure are $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0,$ in which $\alpha=800 \;N / C\, m ^{1 / 2} .$ Calculate
$(a)$ the flux through the cube, and
$(b)$ the charge within the cube. Assume that $a=0.1 \;m$