Assume the dipole model for earth’s magnetic field $\mathrm{B}$ which is given by
${{\rm{B}}_{\rm{v}}} = $ vertical component of magnetic field
$ = \frac{{{\mu _0}}}{{4\pi }}\frac{{2m\,\cos \theta }}{{{r^3}}}$
${{\rm{B}}_H} = $ Horizontal component of magnetic field
${{\rm{B}}_H} = \frac{{{\mu _0}}}{{4\pi }}\frac{{m\,\sin \theta }}{{{r^3}}}$
$\theta $ $= 90^{°}$ -latitude as measured from magnetic equator.
$(a)$ Find loci of points for which : $\left| {{\rm{\vec B}}} \right|$ is minimum;
$(a)$ Given that, $\mathrm{B}_{\mathrm{V}}=\frac{\mu_{0}}{4 \pi} \frac{2 m \cos \theta}{r^{3}}$
$\mathrm{B}_{\mathrm{H}}=\frac{\mu_{0}}{4 \pi} \frac{m \sin \theta}{r^{3}}$
- Squaring and adding equation $(1)$ and $(2)$,
$B_{\mathrm{V}}^{2}+B_{\mathrm{H}}^{2}=\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{m^{2}}{r^{6}}\left[4 \cos ^{2} \theta+\sin ^{2} \theta\right]$
$\therefore B^{2}=\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{m^{2}}{r^{6}}\left[4 \cos ^{2} \theta+1-\cos ^{2} \theta\right]$
$\therefore B=\sqrt{B_{\mathrm{V}}^{2}+B_{\mathrm{H}}^{2}}$
$=\sqrt{\left(\frac{\mu_{0}}{4 \pi}\right)^{2} \frac{m^{2}}{r^{6}}\left[3 \cos ^{2} \theta+1\right]}$
$=\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}\left[3 \cos ^{2} \theta+1\right]^{1 / 2}$
From above equation, the value of $B$ is minimum if $\cos \theta=0$, hence $\theta=\frac{\pi}{2}$ Thus, $\mathrm{B}$ is minimum at the magnetic equator.
$(b)$ For angle of dip,
$\tan \delta=\frac{B_{\mathrm{V}}}{B_{\mathrm{H}}}=\frac{2\left(\frac{\mu_{0}}{4 \pi} \frac{m \cos \theta}{r^{3}}\right)}{\left(\frac{\mu_{0}}{4 \pi} \frac{m \sin \theta}{r^{3}}\right)}$
$=2 \frac{\cos \theta}{\sin \theta}$
$\frac{B_{\mathrm{V}}}{\mathrm{B}_{\mathrm{H}}}=\tan \delta=2 \cot \theta$
For dip angle $\delta=0$, then
$\cot \theta=0$
$\therefore \quad \theta=\frac{\pi}{2}$
Hence locus is on magnetic equator.
Ratio of magnetic intensities for an axial point and a point on broad side-on position at equal distance d from the centre of magnet will be or The magnetic field at a distance d from a short bar magnet in longitudinal and transverse positions are in the ratio
Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole moment $\vec m$ . Which configuration has highest net magnetic dipole moment
The mid points of two small magnetic dipoles of length $d$ in end-on positions, are separated by a distance $x, (x > > d)$. The force between them is proportional to $x^{-n}$ where $n$ is
A charged particle (charge $q$) is moving in a circle of radius $R$ with uniform speed $v.$ The associated magnetic moment $\mu $ is given by
Write difference between electrostatic and magnetics :