Cathode rays and canal rays produced in a certain discharge tube are deflected in the same direction if
A magnetic field is applied normally
An electric field is applied normally
An electric field is applied tangentially
A magnetic field is applied tangentially
A narrow electron beam passes undeviated through an electric field $E = 3 \times {10^4}volt/m$ and an overlapping magnetic field $B = 2 \times {10^{ - 3}}Weber/{m^2}$. If electric field and magnetic field are mutually perpendicular. The speed of the electrons is
From the following, what charges can be present on oil drops in Millikan's experiment
(Here e is the electronic charge)
Answer the following questions:
$(a)$ guarks inside protons and neutrons are thought to carry fractional charges $[(+2 / 3) e ; (-1 / 3) e] .$ Why do they not show up in Millikan's oil-drop experiment?
$(b)$ What is so special about the combination $e / m ?$ Why do we not simply talk of $e$ and $m$ separately?
$(c)$ Why should gases be insulators at ordinary pressures and start conducting at very low pressures?
$(d)$ Every metal has a definite work function. Why do all photoelectrons not come out with the same energy if incident radiation is monochromatic? Why is there an energy distribution of photoelectrons?
$(e)$ The energy and momentum of an electron are related to the frequency and wavelength of the assoctated matter wave by the relations:
$E=h v, p=\frac{h}{\lambda}$
But while the value of $\lambda$ is physically significant, the value of $v$ (and therefore, the value of the phase speed $v \lambda$ ) has no physical significance. Why?
$1$ $J$ is equal to how many electron volt?
The fact that electric charges are integral multiples of the fundamental electronic charge was proved experimentally by