- Home
- Standard 9
- Mathematics
2. Polynomials
medium
Check whether the polynomial $q(t)=4 t^{3}+4 t^{2}-t-1$ is a multiple of $2 t+1$.
Option A
Option B
Option C
Option D
Solution
As you know, $q(t)$ will be a multiple of $2 t+1$ only, if $2 t+1$ divides $q(t)$ leaving remainder zero. Now, taking $2 t+1=0,$ we have $t=-\frac{1}{2}$
Also, $q\left(-\frac{1}{2}\right)=4\left(-\frac{1}{2}\right)^{3}+4\left(-\frac{1}{2}\right)^{2}-\left(-\frac{1}{2}\right)-1=-\frac{1}{2}+1+\frac{1}{2}-1=0$
So the remainder obtained on dividing $q(t)$ by $2 t+1$ is $0$ .
So, $2 t+1$ is a factor of the given polynomial $q(t),$ that is $q(t)$ is a multiple of $2 t+1$.
Standard 9
Mathematics