Compare the relative stability of the following species and indicate their magnetic properties;
$O _{2}, O _{2}^{+}, O _{2}^{-}$ (superoxide), $O _{2}^{2-}$ (peroxide)
There are $16$ electrons in a molecule of dioxygen, $8$ from each oxygen atom. The electronic configuration of oxygen molecule can be written as:
${[\sigma - (1s)]^2}{\left[ {{\sigma ^*}(1s)} \right]^2}{[\sigma (2s)]^2}{\left[ {{\sigma ^*}(2s)} \right]^2}{\left[ {\sigma \left( {1{p_z}} \right)} \right]^2}
{\left[ {\pi \left( {2{p_x}} \right)} \right]^2}{\left[ {\pi \left( {2{p_y}} \right)} \right]^2}{\left[ {{\pi ^*}\left( {2{p_x}} \right)}\right]^1}{\left[ {{\pi ^*}\left( {2{p_y}} \right)} \right]^1}$
Since the $1 s$ orbital of each oxygen atom is not involved in boding, the number of bonding electrons $=8=N_{ b }$ and the number of anti-bonding orbitals $=4=N_{ a }$
Bond order $=\frac{1}{2}\left(N_{ b }-N_{ a }\right)$
$=\frac{1}{2}(8-4)$
$=2$
Similarly, the electronic configuration of $O _{2}^{+}$ can be written as:
$KK{[\sigma (2s)]^2}{\left[ {{\sigma ^*}(2s)} \right]^2}{\left[ {\sigma \left( {2{p_z}} \right)} \right]^2}{\left[ {\pi \left( {2{p_x}} \right)} \right]^2}{\left[ {\pi \left( {2{p_y}} \right)} \right]^2}{\left[ {{\pi ^*}\left( {2{p_x}} \right)} \right]^1}$
$N_{b}=8$
$N_{a}=3$
Bond order $O _{2}^{+}=\frac{1}{2}(8-3)$
$=2.5$
Electronic configuration of $O _{2}^{-}$ ion will be:
$KK{[\sigma (2s)]^2}{\left[ {{\sigma ^*}(2s)} \right]^2}{\left[ {\sigma \left( {2{p_z}} \right)} \right]^2}{\left[ {\pi \left( {2{p_x}}\right)} \right]^2}{\left[ {\pi \left( {2{p_y}} \right)} \right]^2}{\left[ {{\pi ^*}\left( {2{p_x}} \right)} \right]^2}
{\left[ {{\pi ^*}\left( {2{p_y}} \right)} \right]^1}$
$N_{b}=8$
$N_{a}=5$
Bond order $O _{2}^{-}=\frac{1}{2}(8-5)$
$=1.5$
Electronic configuration of $O _{2}^{2-}$ ion will be:
$KK{[\sigma (2s)]^2}{\left[ {{\sigma ^*}(2s)} \right]^2}{\left[ {\sigma \left( {2{p_z}} \right)} \right]^2}{\left[ {\pi \left( {2{p_x}} \right)} \right]^2}
{\left[ {\pi \left( {2{p_y}} \right)} \right]^2}{\left[ {{\pi ^*}\left( {2{p_x}} \right)} \right]^2}{\left[ {{\pi ^*}\left( {2{p_y}} \right)} \right]^2}$
$N_{ b }=8$
$N_{ a }=6$
Bond order of $O _{2}^{2-}=\frac{1}{2}(8-6)$ $=1$
Bond dissociation energy is directly proportional to bond order. Thus, the higher the bond order, the greater will be the stability. On this basis, the order of stability is
$O_2^ + \, > \,{O_2}\, > \,O_2^ - \, > \,O_2^{2 - }$
Thermal decomposition of $AgNO _3$ produces two paramagnetic gases. The total number of electrons present in the antibonding molecular orbitals of the gas that has the higher number of unpaired electrons is. . . . .
Give electron configuration, bond order, Magnetic property and energy diagram for Baron $\left( {{{\rm{B}}_2}} \right)$ Molecule and write about it existence.
In which of the following process, the value of bond order & magnetic nature does not change?
Which of the following options represents the correct bond order?
Which of the following is not paramagnetic