Condenser Ahas a capacity of $15\ \mu F$ when it is filled with a medium of dielectric constant $15$. Another condenser $B$ has a capacity $1\ \mu F$ with air between the plates. Both are charged separately by a battery of $100\,V$ . After charging, both are connected in parallel without the battery and the dielectric material being removed. The common potential now is.......$V$
$400$
$800$
$1200$
$1600$
Two spherical conductors each of capacity $C$ are charged to potential $V$ and $-V$ . These are then connected by mean of a fine conducting wire. The loss of energy will be
Five conducting parallel plates having area $A$ and separation between them $d$, are placed as shown in the figure . Plate number $2$ and $4$ are connected wire and between point $A$ and $B$, a cell of emf $E$ is connected . The charge flown through the cell is :-
Five indentical capacitor plates, each of area $A,$ are arranged such that adjacent plates are at distance $d$ apart. The plates are connected to a source of $emf$ $V$ as shown in fig. Then the charges $1$ and $4$ are, respectively :-
A thin square plate is placed in $x-y$ plane as shown in fig. such that is centre coinsides with origine it's charge density at point $(x, y)$ is $\sigma = \sigma _0xy$ (where $\sigma _0$ is constant). Find total charge on the plate.
A dipole having dipole moment $p$ is placed in front of a solid uncharged conducting sphere are shown in the diagram. The net potential at point $A$ lying on the surface of the sphere is :-