- Home
- Standard 11
- Physics
7.Gravitation
hard
Consider a planet moving around a star in an elliptical orbit with period $T$. The area of the elliptical orbit is proportional to ...........
A
$T^{4 / 3}$
B
$T$
C
$T^{2 / 3}$
D
$T^{1 / 2}$
Solution

(a)
Area of ellipse
$A=\pi r_1 r_2$
$\because r_1=a-a e=a(1-e)$
$\text { and } r_2=a+a e=a(1+e)$
$A=\pi\{a(1-e)\}\{a(1+e)\}$
$=\pi a^2(1-e)(1+e)$
$=\pi a^2\left(1^2-e^2\right)$
$\because e^2 \ll a^2 \text { then }$
$A=\pi a^2$
$\text { So, } a \propto A^{1 / 2}$
$\text { According to Keplar's $III$ law }$
$T^2 \propto a^3$
$T^2 \propto\left[(A)^{1 / 2}\right]^3$
$T^2 \propto A^{3 / 2}$
$A \propto\left(T^2\right)^{2 / 3}$
$A \propto T^{4 / 3}$
Standard 11
Physics