Consider the following equation of Bernouilli’s theorem. $P + \frac{1}{2}\rho {V^2} + \rho gh = K$ (constant)The dimensions of $K/P$  are same as that of which of the following

  • A

    Thrust

  • B

    Pressure

  • C

    Angle

  • D

    Viscosity

Similar Questions

Match the following two coloumns

  Column $-I$   Column $-II$
$(A)$ Electrical resistance $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$
$(B)$ Electrical potential $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$
$(C)$ Specific resistance $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$
$(D)$ Specific conductance $(s)$ None of these

The period of a body under SHM i.e. presented by $T = {P^a}{D^b}{S^c}$; where $P$ is pressure, $D$ is density and $S$ is surface tension. The value of $a,\,b$ and $c$ are

  • [KVPY 2020]

The equation of the stationary wave is
$y = 2A\,\,\sin \,\left( {\frac{{2\pi ct}}{\lambda }} \right)\,\cos \,\,\,\left( {\frac{{2\pi x}}{\lambda }} \right)$
Which statement is not true?

Which of the following is dimensionally incorrect?

A beaker contains a fluid of density $\rho \, kg / m^3$, specific heat $S\, J / kg\,^oC$ and viscosity $\eta $. The beaker is filled upto height $h$. To estimate the rate of heat transfer per unit area $(Q / A)$ by convection when beaker is put on a hot plate, a student proposes that it should depend on $\eta \,,\,\left( {\frac{{S\Delta \theta }}{h}} \right)$ and $\left( {\frac{1}{{\rho g}}} \right)$ when $\Delta \theta $ (in $^oC$) is the difference in the temperature between the bottom and top of the fluid. In that situation the correct option for $(Q / A)$ is

  • [JEE MAIN 2015]