Consider the following equation of Bernouilli’s theorem. $P + \frac{1}{2}\rho {V^2} + \rho gh = K$ (constant)The dimensions of $K/P$ are same as that of which of the following
Thrust
Pressure
Angle
Viscosity
A physical quantity of the dimensions of length that can be formed out of $c, G$ and $\frac{e^2}{4\pi \varepsilon _0}$ is $[c$ is velocity of light, $G$ is the universal constant of gravitation and $e$ is charge $] $
The potential energy of a point particle is given by the expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless combination of the constants $\alpha, \beta$ and $\gamma$ is
If time $(t)$, velocity $(u)$, and angular momentum $(I)$ are taken as the fundamental units. Then the dimension of mass $({m})$ in terms of ${t}, {u}$ and ${I}$ is
Match List $I$ with List $II$
LIST$-I$ | LIST$-II$ |
$(A)$ Torque | $(I)$ $ML ^{-2} T ^{-2}$ |
$(B)$ Stress | $(II)$ $ML ^2 T ^{-2}$ |
$(C)$ Pressure of gradient | $(III)$ $ML ^{-1} T ^{-1}$ |
$(D)$ Coefficient of viscosity | $(IV)$ $ML ^{-1} T ^{-2}$ |
Choose the correct answer from the options given below
If energy $(E),$ velocity $(V)$ and time $(T)$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be