- Home
- Standard 9
- Mathematics
2. Polynomials
medium
Determine which of the following polynomials has $x-2$ a factor :
$3 x^{2}+6 x-24$
$4 x^{2}+ x-2$
Option A
Option B
Option C
Option D
Solution
We know that if $(x-a)$ is a factor of $p ( x )$, then $p ( a )=0$.
$(i)$ Let $P(x)=3 x^{2}+6 x-24$
If $x-2$ is a factor of $p(x)=3 x^{2}+6 x-24,$ then $p(2)$ should be equal to $0 .$
Now, $p(2)=3(2)^{2}+6(2)-24$
$=3(4)+6(2)-24$
$=12+12-24$
$=0$
$\therefore$ By factor theorem, $(x-2)$ is factor of $3 x^{2}+6 x-24.$
$(ii)$ Let $p(x)=4 x^{2}+x-2$
If $x-2$ is a factor of $p(x)=4 x^{2}+x-2,$ then, $p(2)$ should be equal to $0 .$
Now, $\quad p(2)=4(2)^{2}+2-2$
$=4(4)+2-2$
$=16+2-2$
$=16 \neq 0$
$\therefore x-2$ is not a factor of $4 x^{2}+x-2$
Standard 9
Mathematics
Similar Questions
medium