Dimensions of $\frac{1}{{{\mu _0}{\varepsilon _0}}}$, where symbols have their usual meaning, are 

  • [AIEEE 2003]
  • A

    $[L{T^{ - 1}}]$

  • B

    $[{L^{ - 1}}T]$

  • C

    $[{L^{ - 2}}{T^2}]$

  • D

    $[{L^2}{T^{ - 2}}]$

Similar Questions

Out of the following, the only pair that does not have identical dimensions is

The quantities $A$ and $B$ are related by the relation, $m = A/B$, where $m$ is the linear density and $A$ is the force. The dimensions of $B$ are of

Match List $I$ with List $II$

List $I$ List $II$
$A$ Torque  $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$
$B$ Magnetic fileld  $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$
$C$ Magneti moment $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$
$D$ permeability of free  space $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$

Choose the correct answer from the options given below :

  • [JEE MAIN 2024]

A physcial quantity $x$ depends on quantities $y$ and $z$ as follows: $x = Ay + B\tan Cz$, where $A,\,B$ and $C$ are constants. Which of the following do not have the same dimensions

Out of the following which pair of quantities do not have same dimensions