Eccentricity of the hyperbola conjugate to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$ is
$\frac{2}{{\sqrt 3 }}$
$2$
$\sqrt 3 $
$\frac{4}{3}$
The curve $xy = c, (c > 0)$, and the circle $x^2 + y^2 = 1$ touch at two points. Then the distance between the points of contacts is
If angle between asymptotes of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{3} = 4$ is $\frac{\pi }{3}$, then its conjugate hyperbola is
A hyperbola having the transverse axis of length $\sqrt{2}$ has the same foci as that of the ellipse $3 x^{2}+4 y^{2}=12,$ then this hyperbola does not pass through which of the following points?
The values of parameter $'a'$ such that the line $\left( {{{\log }_2}\left( {1 + 5a - {a^2}} \right)} \right)x - 5y - \left( {{a^2} - 5} \right) = 0$ is a normal to the curve $xy = 1$ , may lie in the interval
A hyperbola passes through the point $P\left( {\sqrt 2 ,\sqrt 3 } \right)$ has foci at $\left( { \pm 2,0} \right)$. Then the tangent to this hyperbola at $P$ also passes through the point