1. Electric Charges and Fields
hard

$a$ ત્રિજ્યા અને રેખીય વિદ્યુતભાર ઘનતા $\lambda$ વાળા એક અર્ધ વર્તૂળના કેન્દ્ર $O$ આગળ વિદ્યુતક્ષેત્ર શેના દ્વારા આપી શકાય છે?

A

$\frac{\lambda }{{2\pi {\varepsilon _0}a}}$

B

$\frac{\lambda }{{2\pi {\varepsilon _0}{a^2}}}$

C

$\frac{\lambda }{{4{\pi ^2}{\varepsilon _0}a}}$

D

$\frac{{{\lambda ^2}}}{{2\pi {\varepsilon _0}a}}$

(AIPMT-2000)

Solution

Considering symmetric elements each of length $dl$ at $A$ and $B,$ we note that electric fields

perpendicular to $PO$ are cancelled and those along $PO$ are added. The electric field due to an

element of length $dl$ ( $a d \theta$ ) along $PO$

$\mathrm{d} E=\frac{1}{4 \pi \mathcal{E}_{0}} \frac{\mathrm{d} q}{a^{2}} \cos \theta$

$=\frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda \mathrm{d} l}{a^{2}} \cos \theta$

$=\frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda(a \mathrm{d} \theta)}{a^{2}} \cos \theta$

Net electric field at $\mathrm{O}$

$E=\int_{-\pi / 2}^{\pi / 2} \mathrm{d} E=2 \int_{0}^{\pi / 2} \frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda \cos \theta \mathrm{d} \theta}{a^{2}}$

$2 \cdot \frac{1}{4 \pi \mathcal{E}_{0}} \frac{\lambda}{a}[\sin \theta]_{0}^{\pi / 2}=2 \cdot \frac{1}{4 \pi \mathcal{E}_{0}} \cdot \frac{\lambda}{a} \cdot 1=\frac{\lambda}{2 \pi \mathcal{E}_{0} a}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.