Evaluate the determinants
$\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
$-10$
$-11$
$-12$
$-13$
If $[x]$ denotes the greatest integer $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$
$[cot \,\theta ] x + y = 0$
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to
Number of triplets of $a, b \, \& \,c$ for which the system of equations,$ax - by = 2a - b$ and $(c + 1) x + cy = 10 - a + 3 b$ has infinitely many solutions and $x = 1, y = 3$ is one of the solutions, is :
The value of $k$ for which the set of equations $x + ky + 3z = 0,$ $3x + ky - 2z = 0,$ $2x + 3y - 4z = 0$ has a non trivial solution over the set of rationals is
The determinant $\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ is not divisible by