Evaluate the following using suitable identities
$(107)^{2}$
$16542$
$11745$
$11449$
$12465$
$(107)^{2}=(100+7)^{2}$
$=(100)^{2}+2(100)(7)+(7)^{2}$
$=10000+1400+49$
$=11,449$
Without actual division, prove that $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$
One of the factors of $\left(25 x^{2}-1\right)+(1+5 x)^{2}$ is
Expand the following:
$(3 a-2 b)^{3}$
Expand
$\left(\frac{2 x}{3}+\frac{4 y}{5}\right)\left(\frac{2 x}{3}-\frac{4 y}{5}\right)$
Check whether $p(x)$ is a multiple of $g(x)$ or not :
$p(x)=2 x^{3}-11 x^{2}-4 x+5, \quad g(x)=2 x+1$
Confusing about what to choose? Our team will schedule a demo shortly.