3 and 4 .Determinants and Matrices
hard

 સમીકરણોની સંહિતાની સુસંગતતા ચકાસો : $3 x-y-2 z=2$ ; $2 y-z=-1$ ; $3 x-5 y=3$

Option A
Option B
Option C
Option D

Solution

The given system of equation is:

$3 x-y-2 z=2$

$2 y-z=-1$

$3 x-5 y=3$

This system of equations can be written in the form of $A X=B$, where

$A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right], X=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { and } B=\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]$

Now,

$|A|=3(-5)-0+3(1+4)=-15+15=0$

$\therefore$ $A$ is a singular matrix.

Now,

$(a d j A)=\left[\begin{array}{lcl}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$

$\therefore (adjA)B = \left[ {\begin{array}{*{20}{c}}
  { – 5}&{10}&5 \\ 
  { – 3}&6&3 \\ 
  { – 6}&{12}&6 
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
  2 \\ 
  { – 1} \\ 
  3 
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}
  { – 10 – 10 + 15} \\ 
  { – 6 – 6 + 9} \\ 
  { – 12 – 12 + 18} 
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
  { – 5} \\ 
  { – 3} \\ 
  { – 6} 
\end{array}} \right] \ne 0$

Thus, the solution of the given system of equation does not exist. Hence, the system of equations is inconsistent.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.