- Home
- Standard 12
- Mathematics
Express the following matrices as the sum of a symmetric and a skew symmetric matrix : $\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$
Solution
Let $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right],$ then $A^{\prime}=\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]+\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right]$
Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right]=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]$
Now, $P^{\prime}=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]=P$
Thus, $P=\frac{1}{2}(A+A)$ is a symmetric matrix.
Now, $A-A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]-\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]$
Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$
Now, $Q^{\prime}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]=-Q$
Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing $A$ as the sum of $P$ and $Q:$
$P+Q=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]$ $+\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ $=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ $=A$