3 and 4 .Determinants and Matrices
medium

Express the following matrices as the sum of a symmetric and a skew symmetric matrix : $\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$

Option A
Option B
Option C
Option D

Solution

Let $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right],$ then $A^{\prime}=\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]$

Now, $A+A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]+\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right]$

Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right]=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]$

Now, $P^{\prime}=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]=P$

Thus, $P=\frac{1}{2}(A+A)$ is a symmetric matrix.

Now, $A-A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]-\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right]=\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]$

Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right]=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$

Now, $Q^{\prime}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]=-Q$

Thus, $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.

Representing $A$ as the sum of $P$ and $Q:$

$P+Q=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right]$ $+\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ $=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ $=A$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.