Factorise
$16 x^{2}+40 x y+25 y^{2}$
$=(4 x)^{2}+2(4 x)(5 y)+(5 y)^{2}$
$=(4 x+5 y)^{2}$
$=(4 x+5 y)(4 x+5 y)$
Factorise :
$6 x^{2}+7 x-3$
If $a+b+c=0,$ then the value of $a^{3}+b^{3}+c^{3}$ is equal to
$2 x^{3}-3 x^{2}-17 x+30$
Verify whether the following are True or False:
$-\frac{1}{3}$ is a zero of $3 x+1$
If the polynomial $a x^{3}+4 x^{2}+3 x-4$ and polynomial $x^{3}-4 x+a$ leave the same remainder when each is divided by $x-3,$ find the value of $a$.
Confusing about what to choose? Our team will schedule a demo shortly.