Factorise
$16 x^{4}-y^{4}$
$\left(4 x^{2}+y^{2}\right)(2 x+y)(2 x-y)$
Classify the following polynomials as polynomials in one variable, two variables etc.
$x^{2}-2 x y+y^{2}+1$
On dividing $p(x)=3 x^{3}-6 x^{2}+5 x-10$ by $(x-2),$ find the remainder.
The following expressions are polynomials? Justify your answer:
$\frac{1}{5 x^{-2}}+5 x+7$
Find the zeroes of the polynomial in each of the following:
$q(x)=2 x-7$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=x^{3}-3 x^{2}+4 x+50, g(x)=x-3$
Confusing about what to choose? Our team will schedule a demo shortly.