Factorise
$x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{16}+x y+\frac{y z}{4}+\frac{z x}{2}$
$\left(x+\frac{1}{2} y+\frac{1}{4} z\right)\left(x+\frac{1}{2} y+\frac{1}{4} z\right)$
Classify the following as linear, quadratic or cubic polynomial
$8 x^{3}-343$
Verify whether $2$ and $5$ are zeros of the polynomial $x^{2}-2 x-15$ or not.
Expand
$(x+3)(x+8)$
The following expressions are polynomials? Justify your answer:
$\frac{1}{x+1}$
$(5 x+3)(5 x-3)=\ldots \ldots . .$
Confusing about what to choose? Our team will schedule a demo shortly.