Factorise
$8 x^{3}+27 y^{3}+125 z^{3}-90 x y z$
$(2 x+3 y+5 z)\left(4 x^{2}+9 y^{2}+25 z^{2}-6 x y\right.$$-15 y z-10 z x)$
Expand
$(x+2 t)(x-5 t)$
On dividing $p(x)=x^{3}+2 x^{2}-5 a x-7$ by $(x+1),$ the remainder is $R _{1}$ and on dividing $q(x)=x^{3}+a x^{2}-12 x+6$ by $(x-2), \quad$ the remainder is $R _{2} .$ If $2 R _{1}+ R _{2}=6,$ then find the value of $a$.
Classify the following as a constant, linear,quadratic and cubic polynomials:
$\sqrt{2} x-1$
$\left(\frac{x}{2}+\frac{2 y}{3}-\frac{3 z}{4}\right)^{2}$
Evaluate the following products without multiplying directly
$93 \times 95$
Confusing about what to choose? Our team will schedule a demo shortly.