3 and 4 .Determinants and Matrices
easy

Find minors and cofactors of all the elements of the determinant $\left|\begin{array}{rr}1 & -2 \\ 4 & 3\end{array}\right|$

Option A
Option B
Option C
Option D

Solution

Solution Minor of the element $a_{i j}$ is $\mathrm{M}_{i j}$

Here $a_{11}=1 .$ So  $\mathrm{M}_{11}=$ Minor of $a_{11}=3$

$\mathrm{M}_{12}=$ Minor of the element $a_{12}=4$

$\mathrm{M}_{2 \mathrm{1}}=$ Minor of the element $a_{21}=-2$

$\mathrm{M}_{22}=$ Minor of the element $a_{22}=1$

Now, cofactor of $a_{i j}$ is $\mathrm{A}_{ij}$ So

$A_{11}=(-1)^{1+1} M_{11}=(-1)^{2}(3)=3$

$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(4)=-4$

$\mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3}(-2)=2$

$\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4}(1)=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.