3.Trigonometrical Ratios, Functions and Identities
easy

Find the degree measure of the angle subtended at the centre of a circle of radius $100 \,cm$ by an arc of length $22\, cm$ ( Use $\pi=\frac{22}{7}$ ).

A

$12^{\circ} 36^{\prime}$

B

$12^{\circ} 36^{\prime}$

C

$12^{\circ} 36^{\prime}$

D

$12^{\circ} 36^{\prime}$

Solution

We know that in a circle of radius $r$ unit, if an are of length $l$ unit subtends an angle $\theta$ radian at the centre, then

$\theta=\frac{1}{r}$

Therefore, for $r=100 \,cm , l=22 \,cm ,$ we have

$\theta=\frac{22}{100}$ radian

$=\frac{180}{\pi} \times \frac{22}{100}$ degree

$=\frac{180 \times 7 \times 22}{22 \times 100}$ degree

$=\frac{126}{10}$ degree

$=12 \frac{3}{5}$ degree

$=12^{\circ} 36^{\prime} \quad \quad\left[1^{\circ}=60^{\prime}\right]$

Thus, the required angle is $12^{\circ} 36^{\prime}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.