- Home
- Standard 12
- Mathematics
Find the matrix $X$ so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
$\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$
$\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$
$\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$
$\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$
Solution
It is given that:
$X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
The matrix given on the $R.H.S.$ of the equation is a $2 \times 3$ matrix and the one given on the $L.H.S.$ of the equation is $2 \times 3$ matrix.
Therefore, $X$ has to be a $2 \times 2$ matrix.
Now, let $X=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$
Therefore, we have :
$\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}a+4 c & 2 a+5 c & 3 a+6 c \\ b+4 d & 2 b+5 d & 3 b+6 d\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
Equating the corresponding elements of two matrices, we have
$a+4 c=-7$, $2 a+5 c=-8$, $3 a+6 c=-9$
$\mathrm{ab}+4 \mathrm{d}=2$, $2 \mathrm{b}+5 \mathrm{d}=4$, $3 \mathrm{b}+6 \mathrm{d}=6$
Now, $a +4 c=-7$ $ \Rightarrow a=-7-4 c$ ……….. $(1)$
$2 a+5 c=-8 \Rightarrow-14-8 c+5 c=-8$ $[$From $(1)$ $]$
$\Rightarrow-3 c=6$
$\Rightarrow c=-2$
$\therefore $ $a=-7-4(-2)=-7+8=1$
Now, $\mathrm{b}+4 \mathrm{d}=2 \Rightarrow \mathrm{b}=2-4 d$
$\therefore $ $2 b+5 d=4 $ $\Rightarrow $ $4-8 d+5 d=4$
$\Rightarrow $ $-3 d=0$
$\Rightarrow $ $d=0$
$\therefore $ $b=2-4(0)=2$
Thus, $a=1$ , $b=2$, $c=-2$, $d=0$
Hence, the required matrix $X$ is $\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$