Gujarati
Hindi
13.Oscillations
medium

Find the ratio of time periods of two identical springs if they are first joined in series $\&$ then in parallel $\&$ a mass $m$ is suspended from them :

A

$4$

B

$2$

C

$1$

D

$3$

Solution

$\mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}_{\mathrm{eq}}}}(\text { in series })$

$\frac{1}{\mathrm{k}_{\mathrm{eq}}}=\frac{1}{\mathrm{k}}+\frac{1}{\mathrm{k}}=\frac{2}{\mathrm{k}}$

$\therefore \quad k_{e q}=\frac{k}{2}$

$\therefore \quad \mathrm{T}_{1}=2 \pi \sqrt{\frac{2 \mathrm{m}}{\mathrm{k}}}$

$\mathrm{T}_{2}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}^{\prime}}}(\text { in parallel })$

But $k^{\prime}=k+k=2 k$

$\mathrm{T}_{2}=2 \pi \sqrt{\frac{\mathrm{m}}{2 \mathrm{k}}}$

$\therefore \frac{\mathrm{T}_{1}}{\mathrm{T}_{2}}=\frac{2 \pi \sqrt{\frac{2 \mathrm{m}}{\mathrm{k}}}}{2 \pi \sqrt{\frac{\mathrm{m}}{2 \mathrm{k}}}}=2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.