2. Polynomials
hard

$x^{3}+3 x^{2}+3 x+1$ को निम्नलिखित से भाग देने पर शेषफल ज्ञात कीजिए

$5+2 x$

A

$\frac{8}{27}$

B

$-\frac{27}{8}$

C

$27$

D

$\frac{27}{8}$

Solution

We have $\left(p(x)=x^{3}+3 x^{2}+3 x+1\right.$ and zero of $5+2 x$ is $\left(-\frac{5}{2}\right)$

$\because \,\left[ 5+2x=0\Rightarrow x=-\frac{5}{2} \right]$

$\therefore$  $p \left(-\frac{5}{2}\right)=\left[-\frac{5}{2}\right]^{3}+3\left[-\frac{5}{2}\right]^{2}+3\left[-\frac{5}{2}\right]+1=-\frac{125}{8}+3\left(\frac{25}{4}\right)+\left(-\frac{15}{2}\right)+1$

$=\frac{-125}{8}+\frac{75}{2}-\frac{15}{2}+1=\frac{-27}{8}$

Thus, the required remainder is $\left(-\frac{27}{8}\right)$.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.