- Home
- Standard 9
- Mathematics
2. Polynomials
hard
$x^{3}+3 x^{2}+3 x+1$ को निम्नलिखित से भाग देने पर शेषफल ज्ञात कीजिए
$5+2 x$
A
$\frac{8}{27}$
B
$-\frac{27}{8}$
C
$27$
D
$\frac{27}{8}$
Solution
We have $\left(p(x)=x^{3}+3 x^{2}+3 x+1\right.$ and zero of $5+2 x$ is $\left(-\frac{5}{2}\right)$
$\because \,\left[ 5+2x=0\Rightarrow x=-\frac{5}{2} \right]$
$\therefore$ $p \left(-\frac{5}{2}\right)=\left[-\frac{5}{2}\right]^{3}+3\left[-\frac{5}{2}\right]^{2}+3\left[-\frac{5}{2}\right]+1=-\frac{125}{8}+3\left(\frac{25}{4}\right)+\left(-\frac{15}{2}\right)+1$
$=\frac{-125}{8}+\frac{75}{2}-\frac{15}{2}+1=\frac{-27}{8}$
Thus, the required remainder is $\left(-\frac{27}{8}\right)$.
Standard 9
Mathematics