- Home
- Standard 9
- Mathematics
2. Polynomials
hard
$2 x-1$ એ $8 x^{4}+4 x^{3}-16 x^{2}+10 x+m$ નો એક અવયવ તો $m$ ની કિંમત શોધો.
A
$2$
B
$-2$
C
$-1$
D
$-\frac{1}{2}$
Solution
Let $p(x)=8 x^{4}+4 x^{3}-16 x^{2}+10 x+m.$
As $(2 x-1)$ is a factor of $p ( x )$
$\therefore \quad p\left(\frac{1}{2}\right)=0$ [By factor theorem]
$\Rightarrow \quad 8\left(\frac{1}{2}\right)^{4}+4\left(\frac{1}{2}\right)^{3}-16\left(\frac{1}{2}\right)^{2}+10\left(\frac{1}{2}\right)+m=0$
$\Rightarrow \quad 8\left(\frac{1}{16}\right)+4\left(\frac{1}{8}\right)-16\left(\frac{1}{4}\right)+5+m=0$
$\Rightarrow \quad \frac{1}{2}+\frac{1}{2}-4+5+m=0$
$\Rightarrow \quad 2+m=0 \Rightarrow m=-2$
Standard 9
Mathematics