Find the zero of the polynomial : $p(x) = x -5$
$0$
$-5$
$5$
$4$
We have $p ( x )= x -5$ $\therefore $ $p ( x )=0$
$\Rightarrow $ $x-5=0$ or $x=5$
Thus, a zero of $x-5$ is $5 $.
Use suitable identities to find the products : $(x+4)(x+10)$
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Examine whether $x+2$ is a factor of $x^{3}+3 x^{2}+5 x+6$ and of $2 x+4$.
Expand each of the following, using suitable identities : $(3 a-7 b-c)^{2}$
Find the degree of the polynomials given : $x^{5}-x^{4}+3$
Confusing about what to choose? Our team will schedule a demo shortly.