Find values of ${x},$ if  $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$

$\Rightarrow 2 \times 5-3 \times 4=x \times 5-3 \times 2 x$

$\Rightarrow 10-12=5 x-6 x$

$\Rightarrow-2=-x$

$\Rightarrow x=2$

Similar Questions

if $\left| \begin{gathered}
   - 6\ \ \,\,1\ \ \,\,\lambda \ \  \hfill \\
  \,0\ \ \,\,\,\,3\ \ \,\,7\ \  \hfill \\
   - 1\ \ \,\,0\ \ \,\,5\ \  \hfill \\ 
\end{gathered}  \right| = 5948 $, then $\lambda $  is

Consider the system of linear equations

$-x+y+2 z=0$

$3 x-a y+5 z=1$

$2 x-2 y-a z=7$

Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then

  • [JEE MAIN 2021]

Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ is-

For what value of $k$ to the following system of equations possess a non-trivial solution ?

$x + ky + 3z = 0$   ;    $3x + ky + 2z = 0$  ; $2x + 3y + 4z = 0$

The values of $\lambda$ and $\mu$ for which the system of linear equations

$x+y+z=2$

$x+2 y+3 z=5$

$x+3 y+\lambda z=\mu$

has infinitely many solutions are, respectively

  • [JEE MAIN 2020]