For a reaction $A \to$ Products, a plot of $log\,t_{1/2}$ versus $log\,a_0$ is shown in the figure. If the initial concentration of $A$ is represented by $a_0,$ the order of the reaction is
$1$
$0$
$2$
$3$
Rate of reaction is given by following rate law $ - \frac{{d\left[ c \right]}}{{dt}} = \frac{{{k_1}\,\left[ c \right]}}{{1 + {k_2}\,\left[ c \right]}}$ order of reaction when concentration is verh high
In a reaction $2A + B \to {A_2}B$, the reactant $ A $ will disappear at
Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.
Which of the following is correct
The reaction, $X + 2Y + Z \to N$ occurs by the following mechanism
$(i)$ $X + Y \rightleftharpoons M$ very rapid equilibrium
$(ii)$ $M + Z \to P$ slow
$(iii)$ $O + Y \to N$ very fast
What is the rate law for this reaction