4-1.Complex numbers
hard

$1+ i \alpha, \alpha \in R$ की प्रकार की सभी सम्मिश्र संख्याओं $z$ के लिये, यदि $z^{2}=x+i y$ है, तो

A

$y^2 -4x +2\,=0$

B

$y^2 +4x -4\,=0$

C

$y^2-4x -4\,=0$

D

$y^2 +4x +2\,=0$

(JEE MAIN-2014)

Solution

Let $z=1+i \alpha, \alpha \in R$

$z^{2}=(1+i \alpha)(1+i \alpha)$

$x+i y=\left(1+2 i \alpha-\alpha^{2}\right)$

On comparing real and imaginary parts, we get

$x=1-\alpha^{2}, y=2 \alpha$

Now, consider option $(b)$, which is $y^{2}+4 x-4=0$

$LHS$ : $y^{2}+4 x-4$

$=(2 \alpha)^{2}+4\left(1-\alpha^{2}\right)-4$

$=4 \alpha^{2}+4-4 \alpha^{2}-4$

$=0=\mathrm{R} . \mathrm{HS}$

Hence, $y^{2}+4 x-4=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.