For non-negative integers $s$ and $r$, let

$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$

For positive integers $m$ and $n$, let

$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$

where for any nonnegative integer $p$,

$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$

Then which of the following statements is/are $TRUE$?

$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$

$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$

$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$

$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$

  • [IIT 2020]
  • A

    $A,B,D$

  • B

    $A,B,C$

  • C

    $A,B$

  • D

    $A,D$

Similar Questions

Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$

If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$

and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :

  • [JEE MAIN 2021]

There are $3$ sections in a question paper and each section contains $5$ questions. A candidate has to answer a total of $5$ questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choose the questions, is

  • [JEE MAIN 2020]

In how many ways can a team of $3$ boys and $3$ girls be selected from $5$ boys and $4$ girls?

Let $S=\{1,2,3, \ldots ., 9\}$. For $k=1,2, \ldots \ldots, 5$, let $N_K$ be the number of subsets of $S$, each containing five elements out of which exactly $k$ are odd. Then $N_1+N_2+N_3+N_4+N_5=$

  • [IIT 2017]

Find the number of words with or without meaning which can be made using all the letters of the word $AGAIN$. If these words are written as in a dictionary, what will be the $50^{\text {th }}$ word?