For the decomposition of azoisopropane to hexane and nitrogen at $543$ $K ,$ the following data are obtained.
$t$ $(sec)$ | $P(m m \text { of } H g)$ |
$0$ | $35.0$ |
$360$ | $54.0$ |
$720$ | $63.0$ |
Calculate the rate constant.
The decomposition of azoisopropane to hexane and nitrogen at $543 K$ is represented by the following equation.
After time, $t,$ total pressure$P _{t}=\left( P _{0}-p\right)+p+p$
$\Rightarrow P _{t}= P _{0}+p$
$\Rightarrow p= P _{t}- P _{0}$
Therefore, $P_{0}-p=P_{0}-\left(P_{t}-P_{0}\right)$
$=2 P_{0}-P_{t}$
For a first order reaction,
$k=\frac{2.303}{t} \log \frac{ P _{0}}{ P _{0}-p}$
$=\frac{2.303}{t} \log \frac{P_{0}}{2 P_{0}-P_{t}}$
When $t=360 \,s$,
$=2.175 \times 10^{-3} \,s ^{-1}$
$k=\frac{2.303}{360 s } \log \frac{35.0}{2 \times 35.0-54.0}$
When $t=720\, s$
$=2.235 \times 10^{-3} \,s ^{-1}$
$k=\frac{2.303}{720 s } \log \frac{35.0}{2 \times 35.0-63.0}$
Hence, the average value of rate constant is
$k=\frac{\left(2.175 \times 10^{-3}\right)+\left(2.235 \times 10^{-3}\right)}{2} s ^{-1}$
$=2.21 \times 10^{-3} \,s ^{-1}$
The given reaction $2NO + {O_2} \to 2N{O_2}$ is an example of
The rate of reaction $A + 2B \to 3C$ becomes $72\, times$ when concentration of $A$ is tripled and concentration of $B$ is doubled then the order of reaction with respect to $A$ and $B$ respectively is
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F) $ in the following sentence ?
The reaction is complex.
The rate of the simple reaction, $2NO + O_2 \to 2NO_2$, when the volume of the reaction vessel is doubled
The value of $\frac{{{t_{0.875}}}}{{{t_{0.50}}}}$ for $n^{th}$ order reaction is