For the given figure the direction of electric field at $A$ will be

814-835

  • A

    towards $AL$

  • B

    towards $AY$

  • C

    towards $AX$

  • D

    towards $AZ$

Similar Questions

Two charges each equal to $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ are placed at the corners of an equilateral triangle of side $a$. The electric field at the third corner is ${E_3}$ where $({E_0} = q/4\pi {\varepsilon _0}{a^2})$

The electric field in a region is radially outward and at a point is given by $E=250 \,r V / m$ (where $r$ is the distance of the point from origin). Calculate the charge contained in a sphere of radius $20 \,cm$ centred at the origin ......... $C$

For given arrangement, where four charge fixed at ends of as quare as given, find value of additional charge $Q$ to be put on one of the vertices so that component of net electric field along the vertical symmetric axis is zero at every point on the vertical

A wire of length $L\, (=20\, cm)$, is bent into a semicircular arc. If the two equal halves of the arc were each to be uniformly charged with charges $ \pm Q\,,\,\left[ {\left| Q \right| = {{10}^3}{\varepsilon _0}} \right]$ Coulomb where $\varepsilon _0$ is the permittivity (in $SI\, units$) of free space] the net electric field at the centre $O$ of the semicircular arc would be

  • [JEE MAIN 2015]

Electric field strength due to a point charge of $5\,\mu C$ at a distance of $80\, cm$ from the charge is