For the reaction $A + 2B \to C,$ rate is given by $R$ $ = [A]{[B]^2}$ then the order of the reaction is
$3$
$6$
$5$
$7$
The rate of reaction, $A + B + C \longrightarrow P$ is given by
$r = \frac{{ - d\left[ A \right]}}{{dt}} = K\,{\left[ A \right]^{\frac{1}{2}}}\,{\left[ B \right]^{\frac{1}{2}}}\,{\left[ C \right]^{\frac{1}{4}}}$
The order of reaction is
For the reaction, $2A + B\,\to $ products , when the concentrations of $A$ and $B$ both were doubled, the rate of the reaction increased from $0.3\,mol\,L^{-1}\,s^{-1}$ to $2.4 \,mol\,L^{-1}\,s^{-1}.$ When the concentration of $A$ alone is doubled, the rate increased from $0.3\,mol\,L^{-1}\,s^{-1}$ to $0.6\,mol\,L^{-1}\,s^{-1}.$ Which one of the following statements is correct?
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F)$ in the following sentence ?
The order of this reaction is $10$.
The possible mechanism for the reaction
$2NO + Br \to 2NOBr$ is
$NO + Br_2 \rightleftharpoons NOBr_2$ (Fast)
$NOBr_2 + NO \to 2NOBr$ (Slow)
The rate law expression is
The concentration of $R$ in the reaction $R \rightarrow P$ was measured as a function of time and the following data is obtained:
$[R]$ (molar) | $1.0$ | $0.75$ | $0.40$ | $0.10$ |
$\mathrm{t}$ (min.) | $0.0$ | $0.05$ | $0.12$ | $0.18$ |
The order of the reaction is