For the reaction $A + B \rightarrow$ products, it is observed that
$(i)\,\,$on doubling the initial concentration of $A$ only, the rate of reaction is also doubled and
$(ii)$ on doubling the initial concentration of both $A$ and $B,$ there is a change by a factor of $8$ in the rate of the reaction.
The rate of this reaction is given by
rate $= k[A] [B]^2$
rate $= k[A]^2 [B]^2$
rate $= k[A] [B]$
rate $= k[A]^2 [B]$
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F)$ in the following sentence ?
The order of this reaction is $1$.
If $50\%$ of a reaction occurs in $100$ seconds and $75\%$ of the reaction occurs in $200$ seconds, the order of this reaction is
For the first order decompsition reaction of $N_2O_5$, it is found that -
$(a)$ $2N_2O_5\rightarrow\,\,4NO_2(g)+O_2(g)-\frac{d[N_2O_5]}{dt}=k[N_2O_5]$
$(a)$ $N_2O_5\rightarrow\,\,2NO_2(g)+1/2\,\,O_2(g)-\frac{d[N_2O_5]}{dt}=k'[N_2O_5]$
which of the following is true ?
In a reaction $2A + B \to {A_2}B$, the reactant $ A $ will disappear at
The mechanism for the reaction is given below $2P + Q \to S + T$ $P + Q \to R + S$(slow)$P + R \to T$ (fast)The rate law expression for the reaction is