For which method of convection Newton's law of cooling can be used ?
Read the following statements:
$A.$ When small temperature difference between a liquid and its surrounding is doubled the rate of loss of heat of the liquid becomes twice.
$B.$ Two bodies $P$ and $Q$ having equal surface areas are maintained at temperature $10^{\circ}\,C$ and $20^{\circ}\,C$. The thermal radiation emitted in a given time by $P$ and $Q$ are in the ratio $1: 1.15$
$C.$ A carnot Engine working between $100\,K$ and $400\,K$ has an efficiency of $75 \%$
$D.$ When small temperature difference between a liquid and its surrounding is quadrupled, the rate of loss of heat of the liquid becomes twice.
Choose the correct answer from the options given below :
A hollow copper sphere $S$ and a hollow copper cube $ C$ , both of negligible thin walls of same area, are filled with water at $90°C$ and allowed to cool in the same environment. The graph that correctly represents their cooling is
A body cools from $80^{\circ}\,C$ to $60^{\circ}\,C$ in $5$ minutes. The temperature of the surrounding is $20^{\circ} C$. The time it takes to cool from $60^{\circ}\,C$ to $40^{\circ}\,C$ is........... $s$
According to Newton’s law of cooling, the rate of cooling of a body is proportional to ${(\Delta \theta )^n}$, where $\Delta \theta $ is the difference of the temperature of the body and the surroundings, and n is equal to
The temperature of a liquid drops from $365K$ to $361 K$ in $2$ minutes. Find the time during which temperature of the liquid drops from $344\;K$ to $342K$. Temperature of room is $293\;K$ ....... $\sec$