Four charges $2C, -3C, -4C$ and $5C$ respectively are placed at all the corners of a square. Which of the following statements is true for the point of intersection of the diagonals ?
Electric field is zero but electric potential is non-zero
Electric field is non-zero but electric potential is zero
Both electric field and electric potential are zero
Neither electric field nor electric potential is zero
Six point charges are kept at the vertices of a regular hexagon of side $L$ and centre $O$, as shown in the figure. Given that $K=\frac{1}{4 \pi \varepsilon_0} \frac{q}{L^2}$, which of the following statement $(s)$ is (are) correct?
$(A)$ the elecric field at $O$ is $6 K$ along $O D$
$(B)$ The potential at $O$ is zero
$(C)$ The potential at all points on the line $PR$ is same
$(D)$ The potential at all points on the line $ST$ is same.
Charges are placed on the vertices of a square as shown. Let $E$ be the electric field and $V$ the potential at the centre. If the charges on $A$ and $B$ are interchanged with those on $D$ and $C$ respectively, then
Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is
The two thin coaxial rings, each of radius $'a'$ and having charges $+{Q}$ and $-{Q}$ respectively are separated by a distance of $'s'.$ The potential difference between the centres of the two rings is :
Can the potential function have a maximum or minimum in free space ? Explain.