Four charges $2C, -3C, -4C$ and $5C$ respectively are placed at all the corners of a square. Which of the following statements is true for the point of intersection of the diagonals ?

  • A

    Electric field is zero but electric potential is non-zero

  • B

    Electric field is non-zero but electric potential is zero

  • C

    Both electric field and electric potential are zero

  • D

    Neither electric field nor electric potential is zero

Similar Questions

Six point charges are kept at the vertices of a regular hexagon of side $L$ and centre $O$, as shown in the figure. Given that $K=\frac{1}{4 \pi \varepsilon_0} \frac{q}{L^2}$, which of the following statement $(s)$ is (are) correct?

$(A)$ the elecric field at $O$ is $6 K$ along $O D$

$(B)$ The potential at $O$ is zero

$(C)$ The potential at all points on the line $PR$ is same

$(D)$ The potential at all points on the line $ST$ is same.

  • [IIT 2012]

Charges are placed on the vertices of a square as shown. Let $E$ be the electric field and $V$ the potential at the centre. If the charges on $A$ and $B$ are interchanged with those on $D$ and $C$ respectively, then 

Electric charges of $+10\,\mu\, C, +5\,\mu\, C, -3\,\mu\, C$ and $+8\,\mu\, C$ are placed at the corners of a square of side$\sqrt 2\,m$ . The potential at the centre of the square is

The two thin coaxial rings, each of radius $'a'$ and having charges $+{Q}$ and $-{Q}$ respectively are separated by a distance of $'s'.$ The potential difference between the centres of the two rings is :

  • [JEE MAIN 2021]

Can the potential function have a maximum or minimum in free space ? Explain.