Four charges are placed at the circumference of a dial clock as shown in figure. If the clock has only hour hand, then the resultant force on a charge $q_0$ placed at the centre, points in the direction which shows the time as

819-1297

  • A

    $1:30$

  • B

    $7:30$

  • C

    $4:30$

  • D

    $10:30$

Similar Questions

If potential at centre of uniformaly charged ring is $V_0$ then electric field at its centre will be (assume radius $=R$ )

A charge $Q$ is divided into two parts of $q$ and $Q - q$. If the coulomb repulsion between them when they are separated is to be maximum, the ratio of $\frac{Q}{q}$ should be

A charged object is launched inside a time varying electric field. Its motion is recorded by a video camera on a video tape. When it is at a certain moment $A$ , its position vector $\vec r$, velocity $\vec v$ and acceleration $\vec a$ are measured. A student watches the video at a later time but mistakenly plays the tape in the reverse direction. What is the position, velocity, and acceleration of the object, at moment $A$ observed by the student respectively?

A parallel plate capacitor has plates with area $A$ and separation $d$ . A battery charges the plates to a potential difference $V_0$. The battery is then disconnected and a dielectric slab of thickness $d $ is introduced. The ratio of energy stored in the capacitor before and after the slab is introduced is

What is the angle between the electric dipole moment and the electric field strength due  to it on the equatorial line.......$^o$